Theory and development of biplanar active shim coils for a permanent NMR analyzer

نویسندگان

  • Tian Xia
  • Zhiying Miao
  • Shanshan Chen
  • Hongzhi Wang
  • Yefeng Yao
چکیده

The general expression for magnetic induction in the z axis direction is derived from magnetic scalar potential, and magnetic induction for biplanar shimming coils (BSCs) is also derived from magnetic vector potentials and Green functions, which simultaneously include Sin and Cos harmonic fields. The relationship between these expressions is discussed, and we show they are partially consistent. Magnetic induction generated Sin and Cos stream functions, which are presented and discussed, and we conclude that the type of stream function determines the type of harmonic field, and that BSCs can not only generate specific harmonic fields directly using Cos stream function, but also generate the rest of the harmonic fields through some specific operations. The detailed design process is presented in the form of a diagram. Subsequently, nine BSCs were calculated using the proposed method and applied to a low field NMR relaxation analyzer. The magnetic field homogeneity after shimming increases significantly, which verifies its practical value.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of Biplanar Gradient Coils for Magnetic Resonance Imaging

“Open” magnetic resonance imaging (MRI) scanners are frequently based on electromagnets or permanent magnets, and require self-shielded planar gradient coils to prevent image artifacts resulting from eddy currents in metallic parts of the scanner. This work presents an optimization method for the development of self-shielded gradient coils with biplanar geometry for “Open” MRI scanners. Compare...

متن کامل

Development of a 2.0 Tesla permanent magnetic circuit for NMR/MRI

We have developed the 2.0T permanent magnetic circuit for NMR/MRI (figure1). In the previous study, the maximum field strength of permanent magnets for MRI was 1.0T [1, 3]. With using NdFeB magnetic materials and a special magnetic circuit design, it has been achieved that the magnetic field strength of 2.03 Tesla, H center frequency of 86.3MHz, air gap of 60 mm, 10 ppm-homogeneous volume of 30...

متن کامل

"Shim pulses" for NMR spectroscopy and imaging.

A way to use adiabatic radiofrequency pulses and modulated magnetic-field gradient pulses, together constituting a "shim pulse," for NMR spectroscopy and imaging is demonstrated. These pulses capitalize on phase shifts derived from probe gradient coils to compensate for nonlinear intrinsic main magnetic field homogeneity for spectroscopy, as well as for deviations from linear gradients for imag...

متن کامل

Permanent Magnet Arrangements for Low-Field NMR

For low-field NMR, NdFeB permanent magnet arrangements are proposed to provide the static polarizing magnetic field. Especially a parallel and a circular arrangement of the permanent magnets, iron yokes and small shim magnets were tested and improved by COMSOL. The intent was to guide the design and the construction of NMR magnets by calculating the magnetic field strength and the associated fi...

متن کامل

Modeling Investigation of Dielectric Constant Effect on NMR and IR Properties of C48 as a Single Walled Carbon Nanotube

A cluster model for active site of nanotube (C48) was presented and investigated the geometricstructure and thermochemical parameters. Quantum-mechanical calculations were performed at theHF / 510-30, 6-310, 6-3 IG• and 6-310" levels of theory in the gas phase and three solvents atfour temperatures. Also, nuclear shielding parameters of the active site of nanotube have been takeninto account us...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017